skip to main content


Search for: All records

Creators/Authors contains: "Brandfonbrener, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Most prior approaches to offline reinforcement learning (RL) have taken an iterative actor-critic approach involving off-policy evaluation. In this paper we show that simply doing one step of constrained/regularized policy improvement using an on-policy Q estimate of the behavior policy performs surprisingly well. This one-step algorithm beats the previously reported results of iterative algorithms on a large portion of the D4RL benchmark. The simple one-step baseline achieves this strong performance without many of the tricks used by previously proposed iterative algorithms and is more robust to hyperparameters. We argue that the relatively poor performance of iterative approaches is a result of the high variance inherent in doing off-policy evaluation and magnified by the repeated optimization of policies against those high-variance estimates. In addition, we hypothesize that the strong performance of the one-step algorithm is due to a combination of favorable structure in the environment and behavior policy. 
    more » « less
  2. While there are convergence guarantees for temporal difference (TD) learning when using linear function approximators, the situation for nonlinear models is far less understood, and divergent examples are known. Here we take a first step towards extending theoretical convergence guarantees to TD learning with nonlinear function approximation. More precisely, we consider the expected learning dynamics of the TD(0) algorithm for value estimation. As the step-size converges to zero, these dynamics are defined by a nonlinear ODE which depends on the geometry of the space of function approximators, the structure of the underlying Markov chain, and their interaction. We find a set of function approximators that includes ReLU networks and has geometry amenable to TD learning regardless of environment, so that the solution performs about as well as linear TD in the worst case. Then, we show how environments that are more reversible induce dynamics that are better for TD learning and prove global convergence to the true value function for well-conditioned function approximators. Finally, we generalize a divergent counterexample to a family of divergent problems to demonstrate how the interaction between approximator and environment can go wrong and to motivate the assumptions needed to prove convergence. 
    more » « less